
PRICE 19.95

PROGRAMMING AND TECHNICAL
ASSISTANCE MANUAL

• HIGH RESOLUTION GRAPHICS
• MACHINE LANGUAGE
• MEMORY MAPS
• SCHEMATICS AND PARTS LIST

ENTERPRIZES
BOX 550, BARRINGTON, ILLINOIS 60010

Phone 312/382-5244

r

I

TABLE OF CONTENTS

Ch ap te r

Introduction

1 The MPIOOO

2 The MPA-10

3 Memory Maps

4 Memory Useage for Programs and Variables

5 Entering and Using Machine Language

6 Some Useful Routines

7 The Tape System

8 High Resolution Graphics

9 Saving Time and Space

APPENDICES

A MC6800 Instruction Set Summary

B Machine Language Reference Mode

C Schematics and Parts Layout

D ASCII Character Set/Screen Codes

INTRODUCTION

This APF Imagination Machine Technical Reference Manual is
written for those of you who would like to "know" more about the
inner workings of the Imagination Machine. It assumes the
reader is a technical person who has some general understanding
of microcomputers (hardware, software, or both).

Chapters 1-2 and Appendix C supply all of the available electrical
schematics. Also, a brief operations description is given. The
rest of the manual goes into areas such as memory maps, details
of machine language programming, and high resolution graphics mode.

The book is filled with details of information. Read through
it all or just the sections that interest you, and then get
ready to experiment with your imagination.

Note: Please do not infer from this manual that APF can or will
make available design engineers for your circuits or
ideas. We present this information so you can enhance
your uses and fun of the Imagination Machine. Once you
open the cabinets you void the warranties and are on your
own .

All information presented in this manual is believed to
be accurate and correct.

CHAPTER 1

THE MPIOOO DESCRIPTION

Figure 1-2 shows a block diagram of the MPIOOO. The MPIOOO
contains the following sections

:

1. The Microprocessor Unit (The MPU)
2. The Video Display Generator (The VDG)

3. The T.V. Driver (The MC1372)
4. The Internal ROM
5. The Peripheral Interface Driver (PIA)

6. The IK Read Write Memory for Screen Image
7 . Power Supply

THE MPU

The brains of the system is the microprocessing unit (MPU).

The MPIOOO uses an 8 bit microprocessor - the MC6800. Fuller
details of this are available from several semiconductor sup-
pliers. The MPU gets its instructions from the Read Only Memory,
processes these instructions and data, stores codes in the read
write memory for the VDG to interpret and put out screen patterns ,

and sends and reads codes from the PIA.

All data is transferred over an 8 bit bidirectional data bus.
Addresses are sent out from the MPU on a 16 bit bus
(65,536 unique addresses)

.

The rate at which instructions are executed and data is trans-
ferred is set by a biphase clock input to the CPU. These are

SzSl
,
and <^2 . The MPIOOO has a clock rate of 894,886 KHZ or a cycle

time of 1.1174605 microseconds. This clock is derived by
dividing the 3.579545 mhz xtal frequency by 4

MPIOOO CLOCK TIMING

01

02

3.579545

START OF CYCLE

1,117|js

VCC-0.3V
0.3V

tr - 5ns min
\

50ns max
7

U~1_J

/0.3V

VCC-0.3V-=. vcc-

f- 5ns min_ 50n5 max

^ ^
k

V \ A-

Figure 1-1

APF ELECTRONICS INC.

BLOCK DIAGRAM - MP1000

Figure

1-2

MPIOOO

Block

Diagram

Chapter 1

Page 2

During operation of the MPU, instructions are fetched from
memory, executed, and the next instruction is fetched. The
sequence of which instructions are fetched is determined by
the program flow. There are 2 exceptions to this -

Power Up or Reset

Whenever power is turned on or the Reset button is depressed,
PIN 40 of the MPU receives a signal which directs it to start
a reset or initialization sequence. The starting address of
this sequence is stored in ROM memory at locations Hex FFFF and
FFFE . The MPU always goes to these locations to find its reset
program starting address.

Interrupts

The other time the sequence of instructions can be changed is
if an interrupt request is granted. The MPU stops what it is
doing and finds the address of the interrupt routines which is

stored at Hex FFF8 and PFF9.

VIDEO DISPLAY GENERATOR (VDG)

The VDG is a large scale integrated circuit that scans memory
to produce a composite video signal and generates alphanumeric
or graphics displays. It always scans memory during Phase 1 so
as to not interfere with the MPU. Although the VDG can have up
to 14 modes of operation, it is implemented in the MPIOOO to
have a maximum capability with minimum parts count. A descrip-
tion of the input/output signals is:

Address Output Lines (DA0-DA12) - Thirteen address lines are used
by the VDG to scan the display memory. The starting address of
the display memory corresponds to the upper left corner of the
display screen. As the television signal sweeps from the left to
right and top to bottom, the VDG increments the RAM display address.

Data Inputs (DD0-DD7) - Eight data lines are used to input data
from RAM to be processed by the VDG. The data is interpreted and
transformed into luminance Y (PIN 28) and color outputs iz$A and fiB

(PIN 11 and PIN 10) .

Power Inputs - Vqq requires +5 volts. Vgg requires zero volts
and is grounded.

Video Outputs (jz^A, , Y, CHB) - These four analog outputs are
used to transfer luminance and color information to a standard
NTSC color television receiver via the MC1372 RF modulator.

LUMINANCE (Y) - This six level analog output contains composite
sync.

, blanking and four levels of video luminance.

jzSA - This three level analog output is used in combination with
(Z^B and Y outputs to specify one of eight colors .

chapter 1

Page 3

g! B - This four level analog output is used in combination with
S^A and Y outputs to specify one of eight colors. Additionally,
one analog level is used to specify the time of the color burst
reference signal.

CHROMA BIAS (CHB) - This pin is an analog output and provides a

D.C. reference corresponding to the quiescent value of jz!A and .

CHB is used to guarantee good thermal tracking and minimize the
variation between 1372 and 6847.

Synchronizing Inputs (MS,CLK)

Three-State Control - (MS) is a TTL compatible input which, when
low, forces the VDG address lines into a high impedance state.

Clock (CLK) - The VDG clock input (CLK) uses a 3.579545 MHz
(standard) TV crystal frequency square wave. The duty cycle of
this clock must be between 45 and 55 percent since it controls
the width of alternate dots on the television screen. The
MC1372 RF modulator supplies the 3.579545 MHz clock and has
provisions for a duty cycle adjustment.

Synchronizing Outputs (FS,HS,RP) - Three TTL compatible outputs
provide circuits, exterior to the VDG, with timing references
to the following internal VDG states:

FIELD SYNC - (FS) - The high to low transition of the FS out-
put coincides with the end of active display area. During
this time interval an MPU may have total access to the
display RAM without causing un de sired flicker on the screen.
The Low to High transition of FS coincides with the trailing
edge of the vertical synchronization pulse.

HORIZONTAL SYNC - (HS) - The H? pulse coincides with the
horizontal synchronization pulse furnished to the televi si on
receiver by the VDG. The high to low transition of the HS
outputs coincides with the leading edge of the horizontal
synchronization pulse.

ROW PRESET - (RP)
- An external character generator ROM may

be used with the VDG. An external four bit counter must
be added_to supply row selection. Th^ counter is clocked
by the HS signal and cleared by the RP signal.

Mode Control Lines (Input) (A/G , A/S , INT/EXT , GMO , GMl , GM2 , CSS

,

INV) - Eight TTL compatible inputs are used to control the
operating mode of the VDG. CSS and INV are changed on a char-
acter by character basis. The CSS pin is used to select between
two possible alphanumeric colors; when the VDG is in the alpha-
numeric mode and between two color sets when the VDG is in and
full Graphic mode.

Chapter 1

P age 4

TABLE OF MODE CONTROL LINES (INPUTS)

X = DON ' t CARE

Basically, the MPU places 8 bit codes into the screen memory area.
As the VDG outputs the composite video signal, it fetches from,

memory the appropriate 8 bit code for where it is up to on
outputting to the screen (like an X,Y coordinate) and interprets
the code based upon the selected VDG mode.

The details of each mode as implemented in the MPlOOO are as
follows

:

Major Mode 1

Alphanumeric/Semigraphics Mode

These modes always occupy an 8 x 12 dot character matrix box,
and there are 32 x 16 character boxes per TV frame. This mode

Chapter 1

P age 5

is entered by changing A/G to alphamode. Then all submodes are
selectable on a character by character basis.

Alphanumeric - internal ROM of VDG generates one of 64 ASCII
displays characters in a 5 x 7 box. One of two colors can be
selected with an inverse mode.

Semigraphics - 8 x 12 dot box is broken into 4 small boxes, each
of which are 4 dots wide by 6 dots high. The 8 x 12 box is
given a color and each of the 4 small boxes can be on (luminance)
or off (no luminance) with that color.

8

Alphanumeric Box

Semigraphics Box

5x7 ASCII character in an 8 x 12
box .

4 small boxes (B0-B3) , each 4 dots
by 6 dots

.

Interpretation of 8 Bit Screen Map Word in Alphanumeric/
Semigraphics Mode

Alphanumeric Semigraphic

B7 B6 B5 - BO B7 B6 B5 B4 B3 B2 Bl BO

1 \ 1

0 In ve rs e 6 Bit 1 Color Luminance on (1)

For and Code for For For or off (0) for
Alpha
Mode

Color
Select

ASCII Character Semi
Mode

Large
Box

each Small Box

Color Codes for Semigraphics

B6 B5 B4

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Color

Dark Green
Yellow
Blue
Re d
White
Cyan
Purple
Orange

Chapter 1

Page 6

Major Mode 2

High Resolution Graphics (128 x 192 or 256 x 192)

This mode is implemented similar to the alphanumeric mode except
the character shapes are not predefined in ROM like the ASCII
characters are. Instead they are defined in RAM by the program.
The screen is mapped to have 32 x 12 character boxes. Each box
is 8 dots or 4 dots wide by 16 dots high.

The object shapes are defined in one section of memory, and the
image map in another.

The system is forced to do 2 fetches from memory before sending
data to the VDG for interpretation. The first fetch gets the
object number, and the second gets the details of the particular
row of the object.

For more details in programming in this mode, see Chapter VIII.

LEFT BORDER RIGHT BORDER

VDG TIMING (4.5(js-5.i|js)j

“:7.5|JS-8.3ps)

^HST (63,5ms)

^LB

A/G

-(7.5ms- 8.3 ms) -t^v (35.75ms)

ACTIVE VIDEO

HBNK [(11.6ms)

HORIZ. BLANK

COL. B

COL. A

—1
r*-^CB (2.7u5- 3.2ms)

1 I AG»'“•CSS n 0B

YELLOW RED CYAf

1

BLUE 1 BUFF
j

GRE
^ T

FIELD SYNC

LEADING EDGE OF
VERT. SYNC.

TRAILING EDGE OF
VERT. SYNC.

CYAN MAGENTA
^ORANGE

t

0- 520ns)

0.4V

^WF5(2.039ms)
^DF5r(0^

0.4V^ ?
2.4V

600ns)

0A

01

VDG
ADDRESS

DATA

STROBE

chapter 1

Page 7

MC1372

The MC1372 color TV video modulator is used to generate an RF TV
signal from baseband co lor- di f f e rence and luminance signal
supplied by the VDG.

The MC1372 also supplies the system 3.579545 MHz clock. The
device contains a chroma subcarrier oscillator, lead and lag
networks, suppressed carrier DSB chroma modulator; and RF
oscillator and modulator.

In the MPIOOO the luminance, chroma and sound carrier signals
are inputted to the MC1372. The output is a modulated RF signal
whose carrier frequency is set by the LC tank circuit.

ROM

The ROM contains sequences of MC6800 instruction codes and data.
It tells the MPU what to do, how to do it, and where to put it
when it's done

.

The ROM contains basically 2 groups of programs. One is the
internal rocket patrol game and the other are known as house-
keeping routines. The housekeeping routines are a reset or
startup routines, keyboard strobing routines, interrupt servicing
routines, screen creation routines, sound generator routines,
etc

.

The ROM used in the MPIOOO is a 2K x 8 ROM but capability for
up to 8K X 8 is provided.

PIA

The PIA (MC6821) is a universal peripheral interfacing device.
On one side it has bus signals to interface with the MPU. On
the other it has two 8 bit ports which can be programmed as
inputs or outputs, plus 4 control/interrupt lines.

In the MPIOOO it is used as follows

1) 4 lines are used to drive the MPIOOO controller matrix
(keyboard and joystick) . The 8 lines of the PA Register are
the inputs from these keyboard lines. This is the same way
that calculator keyboards are read.

All keyboard decoding and debouncing is performed by the
software routines. The MPU sets the 4 PB lines so 1 of them
is logic level zero and the other 3 are logic level high.
Then it looks at the PA inputs. If any are low, then one of
the keys on the driver PB line is closed. It then performs

Chapter 1

Page 8

decoding and debouncing of that key. If not, it changes the

4 PB lines so the next one is low with the other 3 high and,

again, looks at the PA inputs.

2) PB6 - drives the GMO input of the VDG.

3) PB7 - selects alphanumeric or graphics mode.

4) CA2 - controls the object latch register.

5) CB2 - generates a sound oscillator

6) CBl - inputs field sync from the VDG and passes it to the

MPU as an interrupt signal.

Register control of the PIA is given in Table 1-1.

memory and address multiplexing

The screen memory consists of IK x 8 bytes. It is comprised of

2 X 2114 (IK X 4) memory chips. Access time on these parts is

200 NS which is very critical.

Only the MPU can write data to memory, but there are 4 possible
addressing modes for reading. These are

Mode Memory Address Input —>-A 9 A8 Aj7 A6 AS A4 A3 A2 A1 AO

1 MPU Address Bits A9 - AO

2 1 VA8 VA7 VA6 VA5 VA4 VA3 VA2 VAl VAO

3 0 VA12 VAll VAIO VA9 VA4 VA3 VA2 VAl VAO

4 1 VD4 VD3 VD2 VDl VDO VA8 VA7 VA6 VA5

AN - Address bit from CPU
VAN - Address bit from VDG
VDN - Address bit from object latch

Mode 1 - Occurs during phase 2 always, and is the MPU time slot

to address memory. The CPU can read or write to memory.

Mode 2 - This is the VDG access during alphanumerics/semigraphics
mode. This occurs during a phase 1.

Mode 3 - This is the first access on graphics mode of the screen
memory map. The object number is latched halfway from

the start of phase 1 so it can be used during the 2nd

half of phase 1. Data fetched during this mode does not

go into the VDG.

Chapter I

Chapter I

Page 10

Mode 4 - This is the 2nd access in graphics mode. The row number
is determined by VA5-VA8 (1 of 16) and the object #
(from the latch) are sent to memory. The resulting data
is clocked into the VDG. This mode occurs during the
2nd half of phase 1 during graphics mode.

MODE SELECTION

Depending upon whether the VDG is in graphics or a Iph anume r i c

s

mode, the memory is mapped differently. The two maps are shown
in figure 3-2 in Chapter 3.

POWER SUPPLY

The power supply consists of an external A.C. adaptor and
internal circuits.

The A.C. input (approximately 9.6 volts) is rectified, filtered
and regulated to provide a D.C. voltage of 5 volts +/- 5%.
This is used to supply all of the semiconductors in the MPIOOO.
Maximum current capability is approximately 1 amp.

CARTRIDGE SOCKET

The cartridge socket provides all of the signals to the outside
world

.

These pinouts are as follows

Pin 29

Pin 30

Pin 1

Pin 2

Pin Signal Pin S i gna

1

1 DO 16 A7
2 AO 17 D3
3 D1 18 A15
4 A1 19 Read/Write
5 D2 20 A8
6 A2 21 Phase 2

7 Ground 22 A14
8 A3 23 EN 89
9 D7 24 A9

10 A4 25 VMA
11 D6 26 A13
12 A5 27 +5 Volts
13 D5 28 AlO
14 A6 29 All
15 D4 30 A12

Chapter I

Page 11

SYSTEM TIMING

WRITE DATA IN MEMORY OR PERIPHERALS

Data Not Valid

tAD 270
tacc = 530
tDSR = 100
tAH 20
tH 20
tDDW = 165

ns maxiTcium
ns maximum
ns maximum
ns maximum
ns maximum
ns maximum

READ DATA FROM MEMORY OR PERIPHERALS

R/W

VMA

Data
From MPU
or Peripherals

0.4 V /
-

V
2.4 V

_ 0.4 V
- *AD

tAH

2.4 V
0.4 V

^AD

—tH
^

5.n M

0.8

Data Not Valid

Chapter I

Page 12

ADJUSTMENTS AND TUNING

Inside the MPlOOO there are several adjustments that can be
made

Chapter I

Page 13

R.F. OUTPUT

A. 1. The R.F. Output Frequency is set by Ll and C5 . LI is an
air core coil and will allow approximately a +6 MHZ adjust-
ment from the factory set frequency of 61.25 MHZ (with
C5 = 39 PF) . By changing C5 to 27 PF , the resonant
frequency becomes approximately 67 MHZ (U.S. Channel 4)

.

2.

The R.F. Output goes through a sideband filter whose
bandwidth is approximately 6 MHZ. It can be adjusted by
tuning L2 to give a peak output of the upper sideband.

B. Tuning Procedure for R.F. Output (Channel 3)

1. Connect R.F. output cable of MPlOOO to spectrum analyzer
or calibrated field strength meter.

2. Switch MPlOOO power on.

3. Adjust coil Ll to read 61.25 MHZ (TV Channel 3)

.

4. Adjust coil L2 to get maximum output signal strength then
adjust the tuning point of L2 to 1 MHZ higher than TV
Channel 3 signal (ie, 62.25 MHZ) or tuning of L2 to reduce
maximum output signal level by about 1 db . This also
gives a tuning point close to 62.25 MHZ.

CRYSTAL OSCILLATOR

A. VCl is a variable capacitor to allow adjustment of the xtal
oscillator frequency.

This clock should be adjusted to give exactly 3.579545 MHZ.

B. VRl allows an adjustment of the duty cycle. It should be
adjusted to give a duty cycle between 45 and 55%.

SOUND OSCILLATOR

The sound subcarrier frequency can be adjusted by tuning L3.

It should be adjusted to give an unmodulated frequency of 4.500
MHZ .

CHAPTER II

THE MPA-10

The MPA-10 base unit adds the following to the MPlOOO

1. An interconnection (the J Connector)
2. A main unit with 8K of RAM and keyboard
3. A power supply for the MPA-10 circuits and expansion
4. A tape deck for both audio and digital recording/playback
5. A cartridge with a Basic interpreter
6. Provision for expansion

J CONNECTOR

The MPlOOO and MPA-10 are electrically joined by the J Connector
(this is so named because its physical configuration looks like
the letter J)

.

Besides connecting the signals between the 2 units, it buffers
the address and data lines.

MAIN UNIT

The main unit of the MPA-10 has the following subsections

1. A memory section
2 . A PIA
3. A decoding section

The memory is comprised of 8 - 8K x 1 dynamic memory chips

.

The MC3242 chips multiplexes the 13 addresses to the memory as
7 row addresses, and 7 column addresses. The control of these
is determined by ROWEN. The MC3242 also performs the task of
memory refresh during Phase 1 when the MPU is not addressing
memory. The rest of the memory section is comprised of timing
and control implemented using a TTL delay line to develop RAS
(row address strobe) , CAS (column address strobe) and ROWEN.

Memory timing is in Figure 2-2.

The PIA is used to strobe the keyboard lines (similar to the
MPlOOO strobing) and to control the tape system. A 3-bit code
is put into PB0-PB2, and decoded by a 74LS145 (1 of 8 decoders)
These become the strobe lines and are looked at by the PA0-PA7
inputs of the PIA. As in the MPlOOO, all decoding and debounc-
ing of the keyboard is performed by the software. To deal with
tape are the following signals:

Chapter II
Page 2

PB3 - AUDEN - Enables or disables audio section of tape deck
PB4 - MOTEN - Enables or disables tape deck motor. This can be

overridden by the fast forward or rewind buttons
PBS - WREN - Indicate to tape whether to read or write to digital

track

.

PB6 - WRDATA - Digital data to tape deck from the MPU
PB7 - READDATA - Digital data from tape deck to the MPU

Decoding Section - The rest of the MPA-10 base unit has address
decoding and expansion bus signal generation.

Keyboard - The keyboard consists of 53 keys. It is set up as

a 7 X 8 matrix. All reading of keyboard, decoding and debounc-
ing is performed in software.

Tape Deck/Power Supply

The MPA-10 has its own power supply. The supply receives an
A.C. input from the A.C. adaptor. 4 D.C. voltages are developed

+ 5 volts ±5%
+ 12 volts +5%
- 12 volts
- 5 volts

These supplies feed all the circuits of the MPA-10 plus go to
the expansion bus

.

The tape circuits are comprised of 2 parts

Audio Section - This is for monural record or playback of audio
signals. The 2 changes from standard designs are:

a) A half track erase head that only erases the audio portion
of the tape

.

b) An enable or disable to the audio section (from the MPA-10
PIA) . This enables/disables both recording of audio or
playback

.

Digital Section - Saturated recording is used to write digital
data. Sufficient current is driven through the record head to
fully polarize the tape in one direction or the other. All
encoding of digital ones and zeros is performed in software.
The digital recovery circuits take the magnetic field from the
tape and recover them into logic levels which then go back to
the PIA. All decoding of digital data is performed by the
software

.

APF ELECTRONICS INC.

BLOCK DIAGRAM - MPA10

Figure

2-I

MPA-10

Block

Diagram

Chapter II
Page 3

THE ROM CARTRIDGE

This go:nsists of a to tal of 12 k il o by

t

es of memory (compr ised
an 8K x 8 and 4K x 8 ROM chi ps) . It CO ntains th.e Basic in te r-
pre ter as well as ce rtain 1/ 0 dr i V e r ro utine s

.

It plugs i nto
the ROM cartridge socke t o f the MP A-10 .

THE EXP'ANSION BUS

P rovi s

i

.on is made to exp and the system furthe r

.

There is a
50 Pin bus that cc)me£5 ou t through the expansion ports . Its
pinouts are shown in Fig ure D-3 .

02

150

200

250

rTw

ROWEN

MEMORY TIMING

Figure 2-2

CHAPTER III

THE IMAGINATION MACHINE MEMORY MAP

Addre s s

Hex Decimal Description/Useage

0000-03FF 0-1023 MPIOOO internal memory. IK of memory
is used. See Figure 3-2 for details
of useage

.

0400- IFFF 1024-8191 Each IK block is same as 0000-03FF.

2000-2003 8192-8195 Peripheral interface adaptor
(Motorola MC6821) used in MPIOOO.
See Figure 3-3 for details.

2004-3FFF 8196-16383 Each 4 consecutive adress same as
2000-2003

.

4000-5FFF 16384-24575 Internal ROM of MPIOOO

6000-6003 24576-24579 Peripheral interface adaptor used in

MPA-10 section.

6004-63FF 24580-25599 Each 4 consecutive address same as
6000-6003

.

6400-67FF 25600-26623 For external I/O devices.

6800-77FF 26624-30719 Basic interpreter ROM cartridge (4K)

.

7800- 7FFF 30720-32767 For ROM expansion

8000-9FFF 32768-40959 Basic interpreter ROM cartridge (8K)

.

AOOO-BFFF 40960-49151 Read/Write memory. See Chapter IV for
details

.

COOO-DFFF 49152-57343 Expansion read/write memory

EOOO-FFEF 57344-65519 Not used

.

FFFO-FFFF 65520-65535 MC6800 reset/interrupt vectors - ROM.

Figure 3-1

Chapter III
Page 2

IK Internal MPlOOO Useage

$ = Hexadecimal ; Otherwise Decimal

$0000
0000

Graphics Mode - used for
screen map.

384 Bytes

0383
$017F

Alpha/Semi Mode - not used.

Not used by Basic inter-
preter

$180
384

128 Bytes
511

$01FF

Used only by ROM cartridge
games as scratch pad and
stack area.

Not used by Basic inter-
preter .

$0200
512

512 Bytes

1023
$03FF

Alpha/Semi Mode - used
for screen image

Graphics Mode - used for
object shape definitions.

Figure 3-2

MPlOOO Peripheral Interface Adaptor Addressing (Addresses in Hex)

$2000 - Data Register A

$2001 - Control Register A

$2002 - Data Register B

$2003 - Control Register B

Figure 3-3

CHAPTER IV

HOW IS MEMORY USED AND ALLOCATED

The 8192 bytes of memory from AOOO-BFFF (decimal 40960-49151)

is used for all storage except screen maps. It is allocated as

follows

:

Decimal Hex

40960 AOOO
T T

41727 A2FF

41728 A300
T

41983 A3FF

41984 A400

49151 BFFF

PROGRAM STORAGE

Program steps are stored in the following format:

First 2 bytes are for the line # (in packed BCD Code).

Then ASCII and token code for statement with all spaces removed
except those in quotes, print using definitions or remarks.

Note all keywords are stored as a 1 byte token code. See

Appendix D for the complete list.

Finally, carriage return symbol (Hex OD)

.

A400 and A401 are used to point to the next locations to store

a statement (they start off upon initialization set with Hex A402)

Actual program storage starts at A402.

As an example of program storage, let's enter the following
program

:

10 PRINT 123

SYSTEM VARIABLES, LABEL TABLES, SIMPLE VARIABLES

I/O BUFFER

PROGRAM TEXT
T

COMPLEX VARIABLE STORAGE

FREE MEMORY
A

STACKS

To look at memory, do a CALL 28672 .

.

This enters the machine
language monitor mode. You now should get an * instead of the

cursor

.

Chapter IV
Page 2

Using the M Command (Examine/Change Memory) type
You type these
And see the contents of A400

M A400 A4

Next, press / (Don't press Return after the A4 is shown.).
This command will show the next memory address and its
contents

.

A401 09

The contents of A400 and A401 are A409. This is the next free
location. If we went back to Basic and entered another state-

its storage would start at A409. Before returning to
Basic, let's look at the next 8 memory locations. Just keep
pressing the Slash Key. You will see the following:

Hex Hex
Addre s s Data

A402 00 / Line Number - This is packed BCD Code -

A403 10 / Line Number is 0010

.

A404 91/ Token for print Command

A405 31/
A406 32/ ASCII Codes for 12?
A407 33/

A408 OD/ Carriage return - end of statement line
A409 00

de limiter

VARIABLES

The variable list or label table (for 26 variable names) is
stored starting at hexadecimal A0C3 . Each 'label or name takes'
9 bytes as follows:

First 2 bytes are for variable name. Variable names can be
longer, but only the first 2 characters are stored.

Then 7 bytes

:

If non subscript numeric variable (such as I), they are 7

byte value in packed BCD.
iiE

6 5 4 3 2 1 0

*

•
I

' ^ BCD digits for
lOBCD digits for integer part fractional part
with most significant digit as sign

If the variable is of the subscripted type (dimensioned) , then
the 9 bytes are as follows:

First 2 Bytes of Name

OA for single subscript-i
OB for double subscript-1

"I—

I

I
~ r

00 00 00

-Always 00

rOO If Numeric
«-FF If string

-Address in RAM Where
-Array is Stored

Let's try an example. Clear the machine and enter the following

10 I = 14
20 DIM A(6) , B$ (7 ,4)
30 J = 12345678.99
40 DIM C (1 , 1)

If we go examine the label table now, we will find it empty.
The label table will only contain entries when statements
using variables are executed, not when they are keyed in.

Type RUN
Now let's go to the examine memory mode
CALL 28672
As opposed to examining single memory bytes at a time, we will
use the D Command to display l6 bytes at a time. We get

*DA0C3 49 00 00 00 00 00 14 00 00
41 00 DA A4 36 00 00
Examing the first 9 bytes only
The first 2 are 49 00. The 49 is ASCII for the Letter I and
00 is null. So, the first entry in the table is the variable
I. The next 7 bytes are the value in packed BCD form. They
are ,00 00 00 00 14, ,0 0 Oq

I

' 4 digits to right of
9 digits co the left L Decimal point decimal point
of decimal point is here

Let's continue with the next entry in the table. Its entry
starts at AOCC (A0C3-t-9) .

Using the D Command again (DAOCC) , let's look at the 9 bytes
starting at AOCC

ASCII
is "A"

QO
I

OA

Y
A4 36

,

,0 0 0 0 0 0 0 0,

name Indicates
single
dimension

Addre s s

in memory
where
values are
stored

Indicates
numeric
type

Chapter IV
Page 4

Continuing in the table, the next entry is at A0D5 . The 9

bytes will be

ASCII code
for name is
B

4200 OB

Dn a 1 1Dual
Dimension

A46B FF

Addre s s

where
value is
stored

L
00 00 00

string type
variable

If you continue on your own, you will find the entries for J
and then C.

MEMORY AMOUNT USED BY VARIABLES

The pointers for where to store dimension variables are at
41009, 41010 (Hex A031, A032)

.

As dimension statements are
executed, the pointers direct the interpreter where to allocate
space and are updated with each allocation.

A RUN command initializes 41009, 41010 to have the same num-
bers as 41984 and 41985 respectively.

For all dimensioned variables there are always 4 bytes pre-
ceding the actual stored values. These bytes contain the
actual dimensions of the array and are called the overhead.

Simple (numeric non subscript) - 9 bytes in name table only

String (single dimension) - 1 byte per character dimensioned
plus 4 bytes for overhead.

Numeric Array-single subscript - 7 bytes per dimension plus
4 bytes for overhead

Numeric Array-two subscripts - 7 bytes each element plus
4 bytes overhead. Ex: DIM(5,4)
is 6 X 5 = 30 elements x 7 bytes
= 210 plus 4 overhead = 214 bytes

String-two subscripts - 1 byte per character dimensioned
plus 4 bytes overhead.

CHAPTER V

ENTERING AND USING MACHINE LANGUAGE PROGRAMS

Machine Language Programs (those written in MC6800 code) can
be entered and used as part of a Basic program. They also can
be saved on tape with a Basic program.

Machine Language Programs are useful where speed is essential
(and a program written in Basic is too slow) or to implement
routines that are not available in the Basic language.

ASSEMBLING AND ENTERING MACHINE LANGUAGE PROGRAMS

MC6800 programs for machines with a cassette only have to be
hand assembled. Units with disks can use the APF Assembler/
Editor

.

Appendix A gives a table of MC6800 machine code. For more
details refer to a MC6800 programming reference manual. Once
a program is assembled, it can be entered into the machine in

hexadecimal format by using the machine Language Reference
Mode. This is entered by a Call Statement (See Appendix B

for details)

.

METHOD 1 - THIS METHOD IS FOR AN ENTIRELY WRITTEN MACHINE LAN-
GUAGE PROGRAM.

Statement #10 will always be CALL 42200 (42200 is Hex A4D8)

.

Then the machine program is entered starting at A4D8.

A problem that must be overcome is that a RUN command will
clear to "00" all memory locations from the end of program
storage to the end of memory. If we just type in statement
10 as above, then key in our machine language program, a RUN
command will wipe out the program since the Basic Interpreter
only knows about line 10 in the program and clears everything
after it to 0. The solution is very simple. After entering
the machine language codes, we change the end of program
pointer so it points past our machine language program. The
end of program pointer is 2 bytes contained at A400 and A401.
They must be set to BF and FO respectively before giving a

RUN command. They also are saved to tape so once changed
they will stay changed.

As an example - to write a program to fill the screen with all
blue. This, of course, could be done with HLIN, but Machine
Code will be faster and serves as a simple example.

First reset the system and key in

10 CALL 42200
15 STOP

Chapter V
Page 2

This will be the entire Basic program and a Run Command will
execute it. (Don't type RUN yet since we haven't entered the
program at 42200.)

Now enter the machine language mode (CALL 28672). The machine
program will start at Hex A4D8 (decimal 42200). The program
is :

ADDRESS CONTENTS INSTRUCTION COMMENT

A4D8 CE LDX #$200 Load X reg with starting
screen address

A4D9 02

A4DA 00

A4DB 86 LDAA #$DF Load A reg with code for
blue square

A4DC DF

A4DD A7 STAA 0,X Store A indexed

A4DE 00

A4DF 08 INX Increment X register

A4E0 8C CPX #$400 Is X equal to end screen
address yet

A4E1 04

A4E2 00

A4E3 26 BNE -8 If not, do next address

A4E4 F8

A4E5 7E JMP #$8894 Jump back to Basic

A4E6 88

A4E7 94

Enter the machine
See Appendix B if

language program
you are unclear

by using the M Command,
on how to use this mode.

Before returning to Basic, change A400/A401 to BF and FO
respectively so a RUN command doesn't wipe out your program.

MA400 BF/
A401 FO Return Key

chapter V
Page 3

Next return to Basic with G8894.

Now run the program and then save it to tape if you want.

Note: If you try to list the program now, you will get gar-
bage on the screen. The List command will go from
beginning of program memory to end of program memory
(and we changed the end pointer) and interpret every-
thing as an ASCII Code or Token.

METHOD 2 - YOU CAN USE A MACHINE LANGUAGE ROUTINE AS PART OF
A BASIC PROGRAM. YOU CAN ENTER ONE OR MORE MACHINE LANGUAGE
ROUTINES, ACCESS THEM FROM A BASIC PROGRAM AND PASS VARIABLES
BETWEEN THEM.

The way this is done is to enter "dummy" Remark Statements
in the program. In the comment field of the Remark State-
ment type in enough characters to allow space for the machine
program (it is suggested you use a single letter, repeated
in the Remark Statement so it is easy to find exactly where
in memory it is stored)

.

As an example, let's do a program to set the screen to have
1 single character code fill it up. The code we put to the
screen will be found in memory location 0000. (We can POKE
location 0 with a code.) The steps are:

1. Write the machine language routine first so we can get a

count of the number of bytes it will use up. Don't try
to figure the actual addresses in memory where it will go
since we have to put the "Basic" program in first. The
machine language program will be

:

CE 0200 LDX# $0200 Start of screen adding

96 00 LDAA 0 Character to be put to screen
is stored at Location 0.

A7 00 STAA 0,X Store A indexed

08 INX Increment index register

8C 0400 CPX #$400 Is X equal to. end screen address
yet

26 F8 BNE -8 If not, do next address

39 RTS Return from subroutine

Adding up the number of bytes for the above routine, we
get 14 .

Chapter V
Page 4

2. Next we enter the Basic program

10 REM AAAAAAAAAAAAAA
20 POKE 0,223
30 CALL mil

Line 10 is the Dummy Remark Statement. It is in the space
occupied by Line 10 in memory that we will put in the
machine language program. We put in the Remark Statement
14 letter A's (you could put in 14 of anything) . Line 20

pokes to Location 0,223. Location 0 is used by our machine
program to contain the value to be stored to the screen
(223 is Hex DF ,

which is a blue square) . Line 30 is the

Call to machine language routine. Right now we have called
mil. We don't know yet exactly where in memory the
routine will be located, so again we use a temporary num-
ber (it will be a five-digit address) .

3. We are now ready to enter the machine language routine.
Type CALL 28672 then press Return Key. We enter the monitor
mode now to find where the Remark Statement of Line 10 is

s to r e d

.

Do a D A400 and you see

* A400 A4 27 00 10 94 20 20 41 41
41 41 41 41 41 41 41

These numbers are the 16 bytes of memory starting at A400.
The first 2 (A427) are the end of program storage pointers.

The next 2 (0010) are the first line number in packed BCD
Code .

The 94 20 20 is the token code for a remark command (A

remark uses 3 bytes for token storage)

.

Next we see a series of 41. This is the ASCII Code for the
letter A, and it is here we want to put our m.achine routine.
Since the first 41 is the 8th byte in the display, its
address is A407. Going back to our machine language rou-
tine, we can now fill in address

ADDRESS CODE

A407 CE 0200
A40A 96 00
A40C A7 00
A40E 08
A40F 8C 0400
A412 26 F8
A4 14 39

Chapter V
Page 5

Press Return and type

M A407 You see the data is 41. Change it to CE and hit
/. You will see the next line,

A408 41 Change this to 02 and hit /.

Continue with this till you enter the 14 bytes of program.

After keying in the program, it is a good idea to check it.

Type DA407 CE 02 00 96 00 A7 00 08 8C
04 00 26 F8 39 OD 00

If the memory matches the above, press Return. If not,
go to the incorrect address (use the M Command) and correct
i t

.

Let's return to Basic.

G8894

4. We are almost ready. We just have to change the Call
Address in line 30. Our program starts at A407 which is
41991 in decimal.

Change Line 30 to be

30 CALL 41991

5. If you followed everything OK, then let's give a Run
Command

.

RUN Return

The screen should have turned blue almost instantly, and
the cursor is back. (The cursor is blue, so press Return
a couple of times to clear the screen.)

6. You have now successfully done a machine language routine.
It can be saved on tape with the rest of the program (just
give a CS AVE)

.

You can add to the program. Just don't add anything in front
of Line 10. That would shift Line 10

' s code in memory, and
the CALL address in Line 30 would become wrong.

Some Guidelines on Writing Machine Language Routines

1. When writing a program in both Basic and CALLS to Machine
routines, the most important thing is to PLAN IT OUT VERY
CAREFULLY . It can be very difficult to make changes later

Chapter V
Page 6

on. Once a Remark Statement is put in and then replaced by
a machine routine, do not put in any "Basic" Statements
with lower line numbers than the Remark Statement. An
insert of a "Basic" Statement will shift all memory con-
tents upward, and you will have to change your CALL State-
ment.

2. Leave extra places in a Remark Statement (at least 3) . If
you later find you have to add something in machine code

,

you can do a jump to subroutine if you leave room.

3. The end of your routines should be an RTS (Return from
Subroutine) and not a jump to 8894.

4. If you want to access dimensioned variables in machine
language, FORCE them to be located where you want them.
By Poking 41009 and 41010 prior to a Dimension Statement,
you can force where a variable is located.

5. The next 3 chapters have lists of several machine language
routines that might be useful.

CHAPTER VI

SOME USEFUL ROUTINES

You might find that there are some routines or functions not
built into the Basic interpreter that you need. Most can be
implemented using either PEEKS/POKES/CALLS in machine language
or with subroutines written in Basic.

"PRINT AT"

If you want to print anywhere on the screen, use a routine
that changes the cursor pointer and do a GOSUB to it before
doing a Print Statement. The screen resides at locations 512-
1023. Remember, you can print anywhere in memory, but only
512-1023 appears on the screen.

The cursor is stored as 2 bytes in memory locations 40960 and
40961 (Hex AOOO/AOOl)

.

10 GOTO 100
20 REM: ROUTINE TO MOVE CURSOR POSITION TO VALUE OF CU

.

25 POKE 40960, INT (CU/256): POKE 40961, CU : RETURN
100 FOR I = 1 TO 32: PRINT: NEXT: REM CLEAR SCREEN TO GREEN
110 INPUT "LINE AND COLUMN TO START PRINT", L, C

120 CU = 512 + L * 32 + C: GOSUB 25: PRINT "HI"
125 INPUT "MORE", K: GOTO 100

Line 100 - will clear the screen to all green.

Line 110 - asks for a horizontal line number (L) , and a

vertical column number (C) where you want to start printing
at. It converts these to the actual memory location on the
screen. 512 is the top corner of the screen so we add to it
the number of lines (L) times 32 (32 characters per line) , and
add the column.

Line 25 - We enter line 25 with the variable CU having the
memory location we want to change the cursor pointers to have.
Since the cursor pointer is a double byte location (it takes
2 bytes to point to a memory location between 0 and 65536) ,

we have to break CU into 2 numbers. The most significant
number (into 40960) is the number of 256's contained in CU.
We get this by taking the integer portion of CU/256. Into
40961 we have to POKE the remainder of dividing 256 into CU.
The POKE instruction automatically does this. So, into 40961
effectively goes CU - INT(CU/256) * 256.

Run the program and enter various numbers for L (between 0

and 15) , and C (between 0 and 31) . After their entry you will
see the word "HI" printed on the screen. The program next
says MORE?, and just press Return to run again.

Chapter VI
Page 2

HOW MUCH MEMORY IS LEFT FOR PROGRAMS AND VARIABLES

Program storage starts at 41986. Dimensioned variable storage
usually occurs after the last statement.

41984, 41985 point to next location to store a step
41009, 41010 point to next location to store dimensioned variables

Using the Above:

Amount of space used for program and variable storage is
AMT = (PEEK (41009) *256 + PEEK (41010)) - 41986

Amount of program space only is
AMT = PEEK (41984) x 256 + PEEK (41985) - 41986

Amount of free space left is
AMT = 49151 - (PEEK (41009) *256 + PEEK (41010))

t

End of memory for an 8K system

USING KEY $(0) FUNCTION

The purpose of KEY$(0) is to get an input from the keyboard
without waiting for a Return Key (which is needed in an input
statement) . KEY$ does not debounce a key, nor does it put
the depressed Key's code to screen. Below is a program uti-
lizing KEY$(0) and does the following:

1. Will wait in a loop for a key to be pressed.

2. Will put the character code to the screen. If it is a

Return, the program will stop.

10 DIM A$ (1)
20 GOTO 100
30 A$ = KEY$(0): IF A$ = "" THEN 30
40 A = ASC(A$) : RETURN

100 GOSUB 30: IF A = 13 THEN STOP
110 PRINT A$
120 IF KEY$(0) "" THEN 120
130 GOTO 100

Line 10 - dimensions a string variable A.

Line 30-40 - The function KEY$(0) is called and its value is
assigned to A$. If A$ is NULL (empty) , then no key is pressed,
and we remain at Line 30.

Chapter VT
Page 3

When a key is pressed, the program moves from Line 30 to 40
where the ASCII value of the key pressed is assigned to
variable A. Then the subroutine returns.

Line 100 - goes to subroutine 30 to get a key input. If A
(the ASCII value of the key pressed) is 13, then it was a
Return Key, and we stop the program.

Line 110 - prints the value of A$ (the key pressed) . Note
the use of the semicolon so we will print on the same line
each time a key is pressed.

Line 120 - checks that the key has been released. Without
Line 120 you will find it very difficult to press a key and
get only one entry (try the program without Line 120)

.

Line 130 - goes to Line 100 and repeats the process.

TRIG FUNCTIONS

Although Trig Functions are not part of APF Basic, they can
be easily implemented as subroutines utilizing series approx-
imations .

The series approximations are

SIN (S)
S_s3

^

S^__S^
1 3 ! 5 ! 7 !

COS (S

)

1

TAN (S

)

S
S ^

^
2 *S^ 17 *s'^

3 15 315

The angle S is in radians and less than or equal to n/2 (90°) .

A simplified implementation is as follows:

10 GOTO 100
20 Y = S - S*S*S/6 + S*S*S*S*S/120 - S * S * S * S * S * S * S /5 0 4 0

:

RETURN: REM

100 INPUT "ANGLE ", Si
ILO IF Sl< = 90 THEN IF Sl> = 0 THEN 130
120 PRINT "ILLEGAL ANGLE": GOTO 100
130 S = 3.1428 * Sl/180
140 GOSUB 20
150 PRINT "ANGLE"; SI, "SIN"; Y: GOTO 100

Chapter VI
Page 4

Line 20 - does the SIN calculation of the Angle S (in radians)

.

For a speedier calculation, the values of 3!, 5! and ! have
been put in instead of calculating them each time.

Line 100 - inputs the angle (in degrees)

.

Line 110 - checks that angle is in range of 0 to 90°. This
line could be replaced by a calculation that converts the
angle to the first quadrant (0 - 90°)

.

Line 130 - converts the Angle SI which is in degrees to an
Angle S in radians.

Line 140 - goes to subroutine at Line 20 and returns with Y

as the SIN (S) .

MOVING THE DIMENSION POINTER

The pointer that directs Basic where to allocate space for
dimensioned variables is contained in 2 bytes at Locations
41009 and 41010. By using POKES, these pointers can be
changed

.

One use of this is there are 512 bytes of memory (Locations
0-511) that are not normally used by Basic. You can force
dimensioned variables to be stored here and gain 512 bytes of
memory space. Example:

5 GOSUB 50
10 POKE 41009, 0: POKE 41010, 0.

20 DIM A (10) , B$ (99)

.

25 GOSUB 50
30 STOP
50 PRINT PEEK(41984), PEEK(41009), PEEK(41985), PEEK(41010):

RETURN

When a RUN Command is given, the dimension pointers are set
equal to the end of program storage pointers.

(41009) = (41984)
(41010) = (41985)

Line 5 - goes to subroutine at 50 and prints these values.

Line 10 - changes the dimension pointers, and Line 20 uses
these new values for the Dimension Statements.

Line 25 - goes to subroutine 50 again. You can see the
dimension pointers have allocated space for A, and B$

.

Chapter VI
Page 5

STRINGS

There are several features of APF's Strings that might differ
from some other Basics.

1. All Strings must be dimensioned before useage. Otherwise
the error message "ILLEGAL VARIABLE" will occur.

20 INPUT A$

Running the above will produce an error message. You must
add Line 10 as follows

10 DIM A$ (X)

Where X is the number of characters plus 1 that you want
to allocate space for A$. X must be a number (not a

variable) and be less than 100.

2. You can dimension an array of Strings

10 DIM B$(3,10) - This dimension is 4 Strings, each with
eleven characters.

3. You can designate the starting position of a String variable
in a statement.

Ex

:

10 DIM A$(10); REM Dimensions A$ as 11 characters.

20 INPUT A$(4)

:

REM - This means to get an input from the
keyboard and place it in A$ starting at
the 5th character position.

30 INPUT A$(0): REM start inputting to the first character
po s it ion

40 INPUT A$: REM - This is a default condition to start
at the first character position

4. A String always has some value assigned to each of its

character positions. The values are what is contained in

memory where the String is dimensioned at. Usually the
Dimension Statement places the storage area in memory that
has been cleared to 0. A zero is a null character and is

non-printable . When assignments of values are made into
the String, they remain until another assignment is made.
This means that Strings are not cleared to null automati-
cally.

Chapter VI
Page 6

Ex :

10 DIM A$ (5)

:

PRINT A$
20 A$ = "ABCDEF" : PRINT A$
30 A$ = "GHI": PRINT A$

Line 10 Dimensions A$ and the Print will show nothing (nulls
are non-printable characters).

Line 20 sets each character position of A$ and prints it

Line 30 will change only the first 3 characters of A$

.

The Print Statement will print GHIDEF.

If you want to clear out a string variable, then assign
it to a clear or null string.

Add Line 15

15 DIM NULL$(5) : REM null is dimensioned and contains nulls.
If we never set it equal to anything, it
will remain with nulls.

Add Line 25

25 A$ = NULL?: REM - This causes A? to be cleared to nulls.

5. STRING CONCATENATION AND DISSECTION

String concatenation can be implemented by using the
LEN Function

10 DIM A$(5), B$(5), C$(ll), NULL$(11)

20 A? = NULL?: B? = NULL?: C? = NULL?

30 INPUT A?, B?

40 C? = A?: C? (LEN (A?) -1) = B?

50 PRINT A?, B?, C? : GOTO 20

Dissection (right part, left part, etc) can be done in a

similar manner.

MACHINE LANGUAGE ROUTINES

There are a number of built-in subroutines in the Basic ROMS
which can be accessed. Most of these cannot be called directly
from Basic since they either require the A, B, or X register
of the MC6800 to be set up with a certain value, or return
with a result in the A, B or X register. Therefore, routines

Chapter VI
Page 7

have to be written to deal with these registers and make their
inputs and outputs accessible to Basic. For the purposes of
this manual we will keep these accesses very general purposes
(to enter the machine language routine, CALL 28672) .

Note: All addresses are in hexadecimal.

1. MOVE MEMORY BLOCK

USE: to move a block of data from one section of memory
to another.

LIMITS: block of data is less than or equal to 256 bytes

SETUP: A Register - none
B Register - number of bytes to be moved
X Register - none

Memory A029/A02A - first address to move to
Memory A02B/A02C - first address to move from

CALL: JSR 7700 (Hex)

RETURNS: none

EXAMPLE: will move block of 10 bytes stored starting at
Location Hex 50 to screen at Location Hex 0300.

First enter the data - we will use the ASCII Codes for the
first 10 letters of the alphabet.

*0050 41/ (REM ASCII for 'A')
0051 42/
0053 43/

etc.

Now the program - We will locate the program starting at
Addre s s 0 0 0 0.

0000 C6 ldAB# 0A 10 bytes to be moved
0001 OA
0002 BD JSR 7700 go to move routine
0003 77
0004 00
0005 7E JMP 7000 Jump back to monitor mode
0006 70
0007 00

Next setup A029 - A02C

A029 03 To Address
A02A 00
A02B 00 From Address
A02C 50

Run the program by typing

GOOOO

Chapter VI
P age 8

Instantly you will see the first 10 alphabet characters
appear on the screen in reverse video, and the program
jumps back to the monitor mode.

2. CLEAR SCREEN TO BLACK

USE: to clear screen to all black
LIMITS : none
SETUP : none
CALL: JSR 4296
RETURNS: none

3. SET SCREEN TO HAVE ALL ONE CODE

USE: similar to 2, but instead of Hex 80 (black character)

,

can fill screen with any character code.

LIMITS - none

SETUP: A Register - code to be put to screen.

CALL: 4298

RETURNS: none

Ex :

*M0000 86 LDAA #$8F
0001 8F
0002 BD JSR $4298
0003 42
0004 98
0005 7E JMP to monitor
0006 70
0007 00

. INPUT FROM CONTROLLERS

USE: to check if a key is pressed on either hand controller

LIMITS : none

SETUP : none

CALL: JSR$41BE - left hand controller
JSR$41D9 - right hand controller

RETURNS: carry flag of status register
If clear, no key pressed.
If set, key pressed and ASCII code for key is contained

in memory Hex 01F2

Chapter VI
Page 9

5. INPUT FROM KEYBOARD

USE : to get key input from main keyboard

LIMITS: will not return a shifted keyword (CTRL Key and
top 2 rows)

.

SETUP : none

CALL: JSR $80CF

RETURNS: ASCII Code for key pressed in A register
If (A) = 0, then no key pressed.

6. ADD TO INDEX REGISTER

USE: allows a number to be added to the index register

LIMITS: number to be added is 256 or less

SETUP X Reg - setup
' A Reg - value to be added

CALL: JSR $771B

RETURNS: A Register added to X and result in X

7. OUTPUT TO SCREEN

USE: will take a code from the A Register and output it
to the screen.

A. If token code, it will decompress it to actual token
word (ex $94 will go to screen as REM) .

B. If scrolling necessary, will scroll screen.

C. If backspace code, will do a backspace.

D. If carriage return, does a return and scroll if necessary.

SETUP: A Register - code to output
B , X - none

$A000/$A001 - screen address

CALL: JSR $8473

CHAPTER VII

THE TAPE SYSTEM

Th6 Imagination Machine tape system was designed to be simple,

reliable, fast, and versatile. This chapter will give some

more explanations and some further possible uses of the taps

system.

First the Basic commands and what they do

CSAVE - This is the save to tape command and the sequence of

events is

1. The motor and audio are enabled. With the audio enabled,

you can hear the digital data through the speaker when it is

recorded. You can also do audio/recording through the mike

jack at this time.

2. The message to REWIND TAPE, PRESS PLAY THEN RETURN is put

up. There is a 2 second delay before this occurs to allow

the motor to get up to full speed. The computer will now

wait till the RETURN KEY is pressed before continuing.

3. There will now be approximately 11 seconds of "Header" put

out to the tape. This is to allow during the read sequence

of syncing up with the data.

4. After the header, 512 bytes will be put out. Depending upon

the mode flag (location 41452), these 512 bytes will come

from 0-511 (flag=non 0 number) or from 512-1023 (flag=0)

.

5. The next block of data put out will be the contents of user

RAM in the system. The computer will start with the byte at

41984 (Hex A400), and send out consecutive bytes till it

reaches the indicated end of memory. The end of memory

pointer is contained in locations 41446-41447. This means

that program storage as well as data storage is saved to

tape .

6. As data has been sent out, a check sum has been calculated.

This check sum byte is next written.

7. The tape motor and audio are disabled, and the computer

returns to the keyboard mode.

CLOAD - This is the opposite of CSAVE and will bring data/

information back to the computer.

1. The motor and audio are enabled. Any recorded audio can be

heard during playback through the built-in speaker.

Chapter VII
Page 2

2. The message to REWIND TAPE, PRESS PLAY THEN RETURN is put
up. Again there is a 2 second delay from motor enable till
this message occurs. The computer now waits for the return
key .

3. The computer will now wait 6 seconds before trying to get in
sync. This is to allow the tape leader to fully pass the
head as there is a chance of the computer getting a false
start from the leader.

4. Next the computer syncs up with the tape data and puts the
first 512 bytes to the screen. This gives the picture you
see loaded to the screen from APE made tapes.

5. After the screen is filled, the computer will read data and
put it in memory starting at 41984. It will keep looking
for data until it has filled up all available user memory
(indicated by 41446/41447).

6. Finally it looks for a checksum byte. White it has been
reading it has recalculated a checksum and then compares
the read and calculated checksum. If they match, it prints
"OK. "

7. The motor and audio are turned off.

CALL ROUTINES

There are several routines that can be called to use the tape
instead of using CSAVE and CLOAD

.

CALL 34040 - Motor and audio are enabled with a 2 second delay.
No message is put to screen.

CALL 34061 - Motor and audio are turned off.

CALL 34138 - Will put out header, 512 bytes from either 0-511
or 512-1023, memory data, and checksum.

CALL 34225 - Will read from tape. First 512 bytes go to screen,
then data goes to memory. The checksum is checked.

SAVING THOSE FRONT PICTURES

All APF prerecorded programs have a front picture that is loaded
to screen. There are several ways that this can be done.

•A. A picture can be created in memory 0-511 by a program. By
moving the cursor pointer, all print statements can be print

Chapter VII
Page 3

in 0-511. Using POKES, colors and shapes can be added. Once
the picture is placed there, you can load a tape with your
program (it won't destroy memory in 0-511) . Next change
41452 (the flag) to non-0 (such as 255) , then do a CSAVE.

As example (remarks are not necessary to type in)

10 CU=0: GOSUB 500: REM MOVE CURSOR TO 0

20 FOR 1=1 to 16: PRINT SPC(32) ; : NEXT I: REM ALL GREEN SCREEN
30 CU=256: GOSUB 500
40 PRINT SPC(9); "THIS IS A TEST"
50 FOR 1=0 TO 31: POKE I, 191: NEXT I: REM RED SQUARE
60 FOR 1=478 to 511: POKE I, 255: NEXT I: REM ORANGE SQUARE
70 CU=512: GOSUB 500: REM MOVE CURSOR BACK TO SCREEN
80 END

500 POKE 40960 , INT (CU/256): POKE 40961, CU- (INT (CU/ 2 5 6)
* 2 5 6

)

510 RETURN

Run the program

Now
POKE 41452,255 - change the flag
Do CSAVE, then try a CLOAD

B. Many of APF ' s front screens have been created using our
Artists & Easel program. After ARTISTS AND EASEL is used to
create a picture, it is relocatedin memory from 0-511 (using
a machine language move routine). Then the tape with the
program that goes with that screen is loaded, 41452 is changed
and then CSAVE is done.

USING THE TAPE TO LOAD NEW SCREEN FROM A PROGRAM

It is possible to have a program running and periodically load
a new front screen from tape and then have the program 'continue

.

(With a little imagination other things can be selectively
lo ade d .

)

SjLnce the tape system saves and loads the screen plus only
INDICATED PROGRAM MEMORY, we can changed INDICATED PROGRAM
MEMORY

.

End of memory is contained in 2 bytes at 41446 and 41447.

It's best to illustrate this in an example. We will create a
picture, save it, create a second picture and also save it.
Then we will read the picture in, wait for a return key, and
then read the 2nd picture in.

TO CREATE AND SAVE THE PICTURE

Chapter VII
Page 4

10 CALL 17046: REM CLEAR SCREEN
20 SHAPE=15' REM CREATE SCREEN THAT IS COLORED HLIN
30 FOR 1=0 TO 15
40 COLOR=I: HLIN 0, 31, I: NEXT I

50 GOSUB 500: REM GOTO ROUTINE TO SAVE
70 CALL 17046: REM CLEAR SCREEN
80 FOR 1=0 TO 31= REM CREATE SCREEN THAT IS COLORED VLIN
90 COLOR=I: VLIN O, 15, I: NEXT I

100 GOSUB 500
110
500

END :

POKE
REM END

41446, 164: POKE 41447

,

1 : REM TO CHANGE END OF MEMORY

510 CALL 34040: CALL 34138 : CALL 34
POINTER TO 41985 (Hex A401)

061: REM MOTOR ON, SAVE,

520 POKE 41446, 191: POKE 41447

,

255
MOTOR OFF END

: REM CORRECT
MEMORY
END OF

POINTER
MEMORY

POINTER
530 RETURN

Enter the program, place a tape in the deck, rewind it and press
play (it won't start without a motor enable) . Now run the
program.

The second part i s to load the screen back in

.

Clear the
machine (pres s res e t) , then

10 GOSUB 500: RE M GOTO ROUTINE TO READ FIRST SCREEN
20 POKE 40960, 0 : INPUT R: REM MOVE CURSOR AND WAIT FOR RETURN

KEY
30 GOSUB 500: RE M GO READ SECOND SCREEN
40 END

500 POKE 41446, 16 4 : POKE 41447, 1: REM CHANGE END MEMORY
POINTER

510 A=PEEK (419 84) : B=PEEK (41985)

:

REM SAVE TRUE END OF

520 CALL 34040

:

530 POKE 41446

,

540 POKE 41984

,

550 RETURN

PROGRAM
IT WILL BE CHANGED WITH LOAD

CALL 34225: CALL 34061: REM: READ TAPE
191: POKE 41447, 255 REM: CHANGE MEMORY END

POINTER BACK
a: POKE 41985, B: REM: CHANGE END PROGRAM POINTER

Enter the program, then place the tape in deck, rewind and press
play.

Now run the program. After the first
Return to get the 2nd picture.

screen is loaded press

Chapter VII
Page 5

TO SAVE PROGRAM DATA ON TAPE

When a CSAVE command is given, all of user memory is saved. This
means all program statements as well as dimensioned variables.
You can enter data into a program, and it can be saved on tape
with the program for future use. One problem that has to be
overcome is that a RUN command clears all memory from the last
statement to the end of memory. Normally a RUN command clears
all variable space to zero. There are several ways to get around
this .

A. Using a GOTO statement instead of a RUN command to start a

program will not clear the variable area. If the first state-
ment of your program is 10, then start the program with GOTO
10 instead of RUN.

The only thing else to note is that after a system reset, a

RUN command must be executed to perform system initialization,
otherwise erroneous messages occur. Once a RUN COItlltiaild hSS
been executed, a GOTO may be given as a direct command.
Several of APF's program tapes use this method to save and
retrieve data.

B. An alternate and more general way to save data is to

1. Determine amount of memory required for dimensioned
variables

.

2. Have the first statement of the program do:
POKE 41009, PEEK (41984) - X: POKE 41010, PEEK (41985) - Y

where X * 256 + Y = amount of memory required for variables

3. Before the first RUN of the program
POKE 41984, PEEK (41984) + X: POKE 41985, PEEK (41985) + Y

41984, 41985 - points to end of program storage
41009, 41010 - points to where next variable is stored

As an example

10 POKE 41009, PEEK (41984)
20 DIM NA$ (30)
30 IF NA$ < > "

"

THEN 100
40 INPUT "NAME NA$
50 CSAVE: STOP

100 PRINT "NAME "
;
NA$

110 STOP
KEY IN THE PROGRAM

POKE 41984, PEEK (41984
RUN THE PROGRAM

chapter VII
Page 6

The first time you RUN, NA$ is not set to anything
gram asks for an input. Then it saves the program
tape .

To see that data was retained:

Reset the system, type CLOAD and load the tape.
RUN the program (type RUN) . Your entry for NA$ was
is printed.

and the pro-
and data to

saved and

Chapter VII
Page 7

SAVING AND RETRIEVING SELECTED AREAS OF MEMORY

Using CALLS, PEEKS and POKES it is possible to save and retrieve
selected segments of memory. (A program can bring into memory
more data or statements from tape.) To do this, the following
CALLS and PEEKS are needed.

He X Decimal Operation

$84F8 34040 CALL - Enable motor and audio. Wait 2 seconds,
then returns

.

$850D 34061 CALL - Shuts off motor and audio.

$8550 34141 CALL - Puts out 11 second header. Then saves
memory contents to tape. Memory area
saved is indicated by "High," "Low."
Also mem end must equal the same as "High

$854B 34228 CALL - Reads from tape to memory. Where it goes
in memory is set by "Low," "High."

$A007 40967 Low - 2 bytes indicating lowest byte of memory
to save or read to tape.

$A009 40969 High - 2 bytes indicating highest byte of memory
to save/read to tape.

$A1F6 41446 Mem End - 2 bytes indicating end of memory

Let's illustrate
in Remarks)

this in an example (It's not necessary to key

10 DIM A(5) Rem set up array space

15 Print "Place tape in deck and engage" Rem print tape message

20 For J = 1 to 3 Rem will do loop 3 times

30 For I = 0 TO 5 : Input A(I) : Next I Rem get inputs for 6 elements
of Array A.

35 GOSUB 200 Rem: Go set up high, low,
mem end

.

40 CALL 34141: CALL 34061 Rem: CALL save routine,
then stop motor

50 GOSUB 300 Rem restore mem end value

60 Next J Rem: get 6 more values
for A

Chapter VII
Page 8

70 Input "Rewind tape, press play, then return key K
Rem: wait for rewind

80 For J = 1 TO 3 Will read back 3 groups
of data

90 GOSUB 200 Go set high/low/mem end

100 CALL 34228 Go read from tape

110 CALL 34061 Stop motor

120 For I = 0 TO 5 Print out values of A

130 Print A (I) ;

II n
^

)

140 Next I

150 Next J Go get next group of
data from tape

160 End

200 POKE 40967

,

PEEK (41984

)

Rem set low pointers to end
2 10 POKE 40968

,

PEEK{41985) of program memory
220 POKE 40969 , PEEK (41009

)

Rem set high pointer to

230 POKE 40970

,

PEEK(41010) end of variable storage
240 POKE 41446

,

PEEK (41009) Rem set memend to same
250 POKE 41447

,

PEEK(41010) as high
260 CALL 34040

:

Return Rem start motor and return

300 POKE 41446

,

191 Rem: restore mem end
310 POKE 41447

,

255
320 Return

Place a blank tape in the deck and RUN the program. Enter values
for A{I) when asked. The program will ask for 3 groups of 6

values each to use for Array A. After you enter each group it

will save them to tape.

When the 3 groups are entered and saved, follow the directions
and you will see the program retrieve from tape each of the 3

groups and display them.

CHAPTER VIII

HIGH RESOLUTION GRAPHICS

The Imagination Machine has two modes of high resolution graphics.

MODE 1 - 128 X 192 dots of resolution with 2 color sets, each
with 4 colors per set.

MODE 2 - 256 X 192 dots of resolution with 2 color sets, each
with 2 colors per set.

These are, in addition to the regular alphanumerics/semigraphics
mode, used by the "BASIC" operating system. Both graphics modes
are implemented as an "OBJECT DEFINED SYSTEM." An object or
shape is defined, and then the screen map shows which object
shape is placed in object boxes of the screen. This is analogous
to the regular alphanumeric mode where the object shapes - the
alphanumeric character set - is predefined in ROM as the ASCII
character set. You place the object number (tne ASCII code)
in the screen map and the VDG decodes the object number into
the appropriate video signal. The main difference in the graphics
mode is the object shape is defined by the programmer in read/
write memory. Therefore we need 2 sections of memory - one for
object shape definitions, the other for a screen map.

In either Mode 1 or Mode 2 the screen map is divided into
32 X 12 boxes (384 total) . Any one of the defined object shapes
can be selected to be placed in any of these 384 boxes, and each
box must have an object number assigned to it.

Each box is subdivided into 16 rows, each row with either 4 dots
wide (mode 1) or 8 dots wide (mode 2)

.

Each object shape will require 16 bytes for its definition (1

byte for each of the 16 rows , and each byte is interpreted as
4 dots wide or 8 dots wide depending on which mode is used)

.

There are 512 bytes of memory allocated for object shape defi-
nition. Since each object shape requires 16 bytes for its defi-
nition, there can be a maximum of 32 objects that are defined at
any one time. Since they are in RAM, they can be redefined.

THE MAP AREAS

The object shape definitions are stored in memory from Hex
200 - 3FF. The first 16 bytes are the definition for object
number 0, the next 16 bytes for object #1, etc. Figure 8-1
shows the object shape map.

chapter VIII
P age 2

Figure 8-1 OBJECT SHAPE MAP

Addresses are in hexadecimal

* Ob j ect 0 : 200 - 20F Ob j e c

t

10 : 300 — 30F

Object 1 : 210 - 21F Object 11 : 310 - 31F

Object 2 : 220 - 22F Ob j e ct 12 : 320 - 32F

Ob j ect 3 : 230 - 2 3F Ob j e ct 13 : 330 - 33F

Object 4 ; 240 - 24F Ob j e c

t

14 : 340 - 34F

Object 5 : 250 - 25F Ob j e ct 15 : 350 - 35F

Ob j e ct 6 : 260 - 26F Ob j e ct 16 : 360 - 36F

Object 7 : 270 - 27F Object 17 : 370 - 37F

Ob j e c

t

8 : 280 - 28F Ob j e ct 18 : 380 - 38F

Object 9 : 290 - 29F Object 19 : 390 - 39F

Object A : 2A0 - 2AF Object lA : 3A0 - 3AF

Ob j e c t B : 2B0 - 2BF Ob j e ct IB : 3B0 - 3BF

Object C : 2C0 - 2CF Object 1C : 3C0 - 3CF

Object D : 2D0 - 2DF Object ID : 3D0 - 3DF

Ob j e ct E : 2E0 - 2EF Ob j e ct lE : 3E0 - 3EF

Object F : 2F0 - 2FF Ob j e ct IF : 3F0 - 3FF

*Addre s s 20 0 i s byte to define top row of Ob j e c t 0

201 is byte to define next row down of Object 0

202 is byte to define next row down of Object 0

20F is byte to define bottom row of Object 0

Chapter VIII
Page 3

The Object Number Map (screen map) is located at Hex 0000-017F.
It looks as follows in FIGURE 8-2.

t
" top left corner of screen

0000 0001 0002

0020 003F

0040 005F

0060 007F

0080 009F

OOAO OOBF

OOCO OODF

OOEO OOFF

0100 OllF

0120 013F

0140 015F

0160 0161 0962

bottom right corner of screen-

12 character row

''

32 character columns-
Figure 8-2

Since there are only 32 definable objects, we require only 5

bits in the screen map word to select which object is s'elected.
One more bit of this word is used to select which color set is
used. This means an objects color set is selectable on a
character by character basis. The screen can actually show each
of the 32 objects in both color sets. The final 2 bits of the
word are not used.

B7-B6 B5 B4 BO

i i

Color 5 bits for
Set object number

Chapter VIII
Page 4

COLORS OF AN OBJECT SHAPE DEFINITION

Mode 1 - In Mode 1 each byte of a definition is interpreted as

4 bit pairs. Each bit pair selects 1 of 4 colors as

follows

:

Bit Pair Color Set 0 Color Set 1

0 0 Green White

1
—

1

o Yellow Green

1 0 Blue Purple

1 1 Red Orange

Border Green White

BORDER COLOR - The border color (screen that is visible outside
of the 384 character boxes) takes the color of
green or white depending upon the color set used
in the right most character box of a line. If
Box OOIF has color set 0, then the border on
those 16 rows is green. If it has color set 1

selected, then its border is white. The top and
bottom borders take the color set from the bottom
right character (Box 017F) .

Mode 2 - In this mode each bit of the object shape definition
byte is interpreted as 1 of 2 colors.

Bit Color Set 0 Color Set 1

0 Black Black

1 Green White

Border Green White

Border color is determined like Mode 1.

Chapter VIII
Page 5

WRITING PROGRAMS IN HIGH RESOLUTION GRAPHICS

USING BASIC

High resolution screens

program statements.
can be created by using just Basic

Switching Between Modes

TO go fro» alph.oumerio to graphics a.ode ,
2 POKES are reguired

POKE 8193, 60 This enables the object latch. It also allows

orange color set in alphanumeric mode. From

this point on, this aidtsss does not tiavo to loo

changed. In inverted alphanumeric mode you will
get orange/black letters instead of green. If
you want to disable this, then POKE 8193, 52.

POKE 8194, 158 - This will set the display to graphics (128 x 192)
mode. Sets A/G=l: GMO=0. When this is done
you will no longer see alphanumeric characters.
Also, 8193 must be set to 60 previously.

POKE 8194, 222 - This will set the display to graphic (256 x 192)
mode. Sets A/G=l and GMO=l
POKE with 30 to return to ALPHA/SEMI

SETTING UP SHAPES

Object shapes can be set up by using POKE instructions.

The codes to POKE can be stored as data statements, as arrays, or
as absolute statements.

As an example

:

To create a high resolution graphics screen where the objects
are vertical and horizontal lines.

.The object will be a green box with yellow lines for ^ the screen
and a white box with green lines for the other h- Both will be
in 128 X 192 mode.

This will be 3rd pair from left

8 th & 9 th rows

The 16 bytes for the shape will be
4,4,4,4,4,4,4,85,85,4,4,4,4,4,4,4

Chapter VIII
Page 6

10 POKE 8193, 60: POKE 8194, 158: Rem set up graphics mode
20 For I — 512 to 518. Rem Set up object definition
30 POKE I, 4: POKE I + 9, 4

40 Next I

50 POKE 519, 85: POKE 520, 85
60 For I = 0 to 191: Rem Set object numbers to screen map
70 POKE I, 0: POKE I + 192, 64: Next I
80 POKE 40960, 1: POKE 40961, 129: Rem Move cursor off screen
90 Input K: POKE 40960, 2 • Rem Wait for return key

100 POKE 8194, 30: Rem Return to alphanumeric mode

It is a good idea before trying to do graphic programs to sit
down and carefully sketch out on paper the picture you want to
create. Define the various objects and where they are to be
placed

.

Chapter VIII
P age 7

WRITING PROGRAMS IN HIGH RESOLUTION GRAPHICS USING MACHINE LANGUAGE

The examples shown do not give specific addresses where to

locate but are general relocatable programs.

Example 1

Entering into the Various Modes

To enter Mode 1 or 2 ,
the VIK ih the H?1QQQ m\iSt

There are 3 signals that control graphics mode.

A/G - Alphanumeric or Graphic select - must be logic "1" for
graphics

GMO - Logic "0" - Mode 1 {128 x 192)
Logic "1" - Mode 2 (256 x 192)

CLR - Must be 1, to enable objects codes

The program to enter from semigraphics to graphics mode is

HEX CODE INSTRUCTION COMMENTS

B6 LDAA $2002 Load "A " with PIA Data Regi s te r B

20

02

84 ANDA #$ 3F Set A/G high and GMO low

3F

8A ORAA #$80 If ORAA with $C0, will set GMO high
and go into Graphics Mode 2. ORAA
with $80 goes into Graphics Mode I.

80

B7 STAA #$2002

20

02

B6 LDAA $2001 Load "A" with PIA control Register A

20

01

84 ANDA #$C7 Will set CA2=1 (which is CLR Signal)

.

Chapter VIII
Page 8

HEX CODE INSTRUCTION COMMENTS

C7

8A

38

B7

20

01

ORAA #$38

STAA $2001

EXAMPLE 2 Routine to set same value to a consecutive group of
addre s s e s

.

Routine is at $477C (in internal ROM)

Enter routine with

X REGISTER start address in memory to get set

B REGISTER -• number of consecutive bytes from x register
addresses that get set

A REGISTER value to be stored

As a simple example, set the top of screen to all have Object 3

in them. First set Object 3 to have all bytes at $AA.

HEX CODE INSTRUCTION COMMENTS

CE

02

30

C6

10

86

AA

LDX #$0230 Load x with first address
Object #3 starts at $0230

LDAB #$10 Load B with count

LDAA #$AA Load A with value

BD JSR $477C Jump to subroutine

47

7C

CE

00

00

C6

20

86

03

BD

47

1C

Chapter VIII
Page 9

INSTRUCTION

LDX #$0000

LDAB #$20

LDAA #$03

JSR $477C

COMMENTS

Load X with top of screen address in
graphics mode

Load B with count (32)

Load A with value. Value is object
3 code number.

Jump to subroutine

Chapter VIII
Page 10

INTERRUPTS

The Imagination Machine has a built-in IRQ Interrupt Servicing
Routine. This can only be used during a machine language
program. Never allow the interrupts to be enabled while
Basic statements are being executed. (The system initial-
ization routine disables the interrupt mask of the 6800 status
register.

)

The interrupt system is driven by the field sync output of
the VDG. This occurs every 1/60 of a second. It is fed to
the MC6800 IRQ input via the MPlOOO PIA.

INTERRUPT ENABLING/DISABLING

1. TO ENABLE THE INTERRUPTS

A. CBl of the PIA must be programmed to accept and input.
CB 1 Mode is set by the CONTROL REGISTER SB which is

Hex Address 2003.

2003 — Hex 35 - IRQ set by high to low transition of
field sync

2003 Hex 37 - IRQ set by low to high transition of
field sync

B. A CLI instruction must be given (clear interrupt mask
bit in status register)

.

2. TO DISABLE THE INTERRUPTS

A. Set 2003 with Hex $34

B. Give an SEI instruction

INTERRUPT SERVICING ROUTINE

The built-in interrupt servicing routine does the following

1. Allows jumps to subroutines whose addresses are set by the
us e r .

2. Keeps count of number of interrupts as well as seconds and
minutes

.

There are several flags and counters used by the Interrupt
Routine as follows

160 - ($01FC) - if non zero, causes an immediate JSR from
interrupt routine. The JSR address is contained in I60J.
Both 160 and I60J are user set.

Chapter VIII
Page 11

I60J - ($01C5-0lC6) - JSR address if 160 is non zero.

ISEC - ($01FD) - if ISEC is non zero, then every 60 interrupts
(1 second) a JSR will occur. JSR address is contained in
ISECJ. Both ISEC and ISECJ are user set.

ISECJ - (01C7-01C8) - JSR address if ISEC is non zero and 1/60
second counter overflows.

T60 - (OlFS) - incremented by each interrupt. Clears to zero
when overflows (at 256th interrupt) and starts count again.

TIME - (OlFB) - keeps count of 1/60 of seconds. Clears when
reaches 60 and then causes SECOND to be incremented.

SECOND - (01F9) - incremented every SECOND. Clears when reaches
60 and increments MINUTE.

MINUTE - (OlFA) - increment every 60 SECONDS. Clears when
reaches 60

.

Below is a flowchart of the interrupt servicing routine.

JUMP TO
SUBROUTINE
INDICATED
BY I60J

Chapter VIII
Page 12

EXAMPLE OF INTERRUPT USEAGE

As an example to show how to use the interrupts

1. Each 60th of a second we will add a character to the screen.

2. After 5 seconds we will clear the screen and return to the
monitor routine.

SOLUTION

1. First we need 2 routines for the interrupts.

A. 1/60 interrupt - put character to screen

0010 DE 00 LDX (00) SCREEN POINTER

0012 96 02 LDAA (02) CODE TO SCREEN

0014 A7 00 STAA, 0, X STORE IT

0016 08 INX INCREMENT SCREEN POINTER

0017 DF 00 STX 00

0019 4C INCA INCREMENT CODE

OOIA 97 02 STAA 02

OOlC 39 RTS RETURN

B . The 1 second interrupt routine

0020 B6 01F9 LDAA SECOND

0023 81 04 CMPA #4

0025 2C 01 BGE +1

0027 39 RTS

0028 OF SEI

0029 BD 4296 JSR 4296

002C 7E 7000 JMP MONITOR

2 . The initialization and main routine

0030 CE 0010 LDX# 0010 SET UP JSR ADDRESSES

0033 FF 01C5 STX 01C5 FOR INTERRUPT ROUTINES

Chapter Vlii
Page 13

0036 CE 0020 LDX# 0020

0039 FF 01C7 STX 01C7

003C 86 35 LDAA 35 SET UP PIA

003E B7 2003 STAA 2003

0041 4F CLRA CLEAR COUNTERS

0042 B7 01F8 STAA T60

0045 B7 OlFB STAA TIME

0048 B7 01F9 STAA SECOND

004B 97 02 STAA 02 SET CHARACTER CODE

004D 4C INCA

004E B7 OlFC STAA 160 CLEAR FLASS FOR INTERRUPT

0051 B7 OlFD STAA ISEC ROUTINE

0054 CE 0200 LDX# 0200 SET SCREEN ADDRESS

0057 DF 00 STX 00

0059 OE CLI ENABLE INTERRUPT

005A 3E WAI WAIT FOR INTERRUPT

005B 20 FD 'bra - 3

If you have everything loaded in correctly, type G0030.

You will see the screen fill up with characters. Since it is
putting up 1 character every 60th of a second, for 5 seconds,
there will be 300 characters and then the screen clears and
goes back to the monitor.

CHAPTER IX

SAVING SPACE AND TIME

There are several things that can be done in a program to save
memory space and speed up programs.

SAVING SPACE

1. After a section of a program is running, all Remark statements
should be removed to save space.

2. Use multistatements per line. Each new line takes 3 extra
bytes. A line can have up to 128 characters, and all keywords
are only 1 character.

3. Using subroutines can save space instead of retyping a common
used routine

.

4. Do not o ve r- dimen s ion strings and arrays.

SPEEDING UP PROGRAMS

1. Place all subroutines at the beginning of a program (lowest
step numbers) . All statements are stored in ascending order
of statement number and when a GOSUB is executed, it starts
at the beginning of the program looking for the correct line
number. This means a subroutine at step 9000 is found only
after the machine looks at all line numbers preceding 9000.

2. Remove Remark statements if possible.

3. Try to use nonsubs cripted variables in for/next loops or in
frequent calculations. It takes about 3 times as long to
find a subscripted variable's value as opposed to a non-
subscripted variable.

4. Use multistatements per line.

5. Use and define frequently used variables early in program
execution. The machine develops variable lists. Those first
used are first on the list and are found quickest.

6. Don't over-dimension strings and arrays.

7. Use machine language routines if possible. Remember Basic is
an interpreted language and not compiled.

Appendix A

MC6800 Instruction Set

ADDRESSING MODES

ACCUMULATOR AND MEMORY

OPERATIONS MNEMONIC

IMMEO DIRECT INDEX EXTND INNER

OP ~ # DP -- # OP ~ # OP ~ # OP ~ #

Add ADDA 88 2 2 SB 3 2 AB 5 2 8B 4 3

ADDB CB 2 2 DB 3 2 EB 5 2 FB 4 3

Add Acmitrs ABA IB 2

Add with {^rry ADCA 89 2 2 99 3 2 A9 5 2 B9 4 3

ADCB C9 2 2 D9 3 2 E9 5 2 F9 4 3

And ANDA 84 2 2 94 3 2 A4 5 2 B4 4 3

ANDB C4 2 2 04 3 2 E4 5 2 F4 4 3

Bit Test BITA 85 2 2 95 3 2 A5 5 2 B5 4 3

BITS C5 2 2 D5 3 2 E5 2 F5 4 3

Clear CLR 6F 2 7F 3

CLRA 4F 2 1

CLRB 5F 2 1

Compare CMPA 81 2 2 91 A1 2 B1 4 3

CMPB Cl 2 2 01 3 El 2 FI 4 3

Compare Acmitrs CBA 11 2 1

Complement, 1's COM 63 2 73 6 3

COMA 43 2 1

COMB 53 2 1

Complement. 2's NEC 60 2 70 3

(Negate) NEGA 40 2 1

NEGB 50 2 1

Decimal Adjust, A OAA 19 1

Decrement DEC 6A 2 7A 3

DECA 4A 2 1

DECB 5A 1

Exclusive OR EORA 88 98 3 A8 2 B8 4

EORB C8 D8 E8 2 F8 3

Increment INC 6C 2 7C 6

INCA 4C 1

INCB 5C 2 1

Load Acmitr LDAA 86 36 A6 2 B6 4

LDAB C6 D6 3 E6 5 2 F6 4

Or, Inclusive ORAA 8A 9A 3 2 AA 2 BA 4

GRAB CA 2 DA 3 EA 2 FA 4

Push Data PSHA 36 4 1

PSHB 37 4 1

Pull Data PULA 32 4 1

PUL6 33 4 1

Rotate Left ROL 69 2 79 6

ROLA 49 1

ROLB 59 1

Rotate Right ROR 66 2 76 6

RORA 46 1

RORB 56 1

Shift Left, Arithmetic ASL 68 2 78 6

ASLA 48 1

ASLB 58 1

Shift Right, Arithmetic ASR 67 7 2 77 6 3

ASRA 47 1

ASRB 57 1

Shift Right, Logic. LSR 64 7 2 74 6 3

LSRA 44 2

LSRB 54 2

Store Acmitr. STAA 97 4 2 A7 6 2 . B7 5 3

STAB D7 4 2 E7 6 2 F7 5 3

Subtract SUBA 80 2 2 90 3 2 AO 5 2 BO 4 3

SUB8 CO 2 2 DO 3 2 EO 5 2 FO 4 3

Subract Acmitrs. SBA 10 2

Subtr. with Carry SBCA 82 2 2 92 3 2 A2 5 2 B2 4 3

SBCB C2 2 2 D2 3 2 E2 5 2 F2 4 3

Transfer Acmitrs TAB 16 1 1

TBA 17 2 1

Test, Zero or Minus TST 6D 7 2 70 6 3

TSTA 4D 2 I

TSTB 5D 2 1

BOOLEAN/ARITHMETIC OPERATION

(Ail ref tsttr labels

refer to contents)

COND. CODE REG.

5 4 3 2 1 0

H 1 N z V C

t t t t I

t t t t t

t t t t }

t t t X t

t t t t I

• t t R •

• t t R •

• t t R •

9 t t R «

• • R s R R

• R s R R

• R s R R

• t X t t

• t t t. t

• } t i t

• I t R S

• t I R S

• X t R s

• X X o ®
• X X o ©
• t X o ©
• t t t ©
• t t @
• t J €) «>

• X t ® «

• t t R •

• t X R •

• t X © •

• X X © •

• t t © •

• X X R •

• t t R •

• X t R •

• X t R •

• e> • • •

* • • 9

e 9 9 »

o t t © I

• t t © t

• X X © I

• t t t

• X X ® X

• X X © t

• t X X

• X X © t

• X X © t

• t t © X

• t X © X

• X t © X

• R X ® X

• R t © X

• R I © X

• t t R •

• t t R •

• t t t t

• t t t t

• i t t t

• t t t

• f t t t

• X R •

• X X R •

• X X R R

• t t R R

• i R R

A + M-A
B + M -* Bj

A + B-'-A

A + M + C-^A

B + M + C-*-B

A . M -A
B • M

A* M

B • M

00

00 --A

00 -B

A - M

B - M

A~ B

M -*!«

A-^A

B ->0

00 - M M

00 - A -> A

00 - B -*B

Converts Binary Add. of BCD Characters

into BCD Format

M - 1 -^M

A - 1 -»A

8 - 1

A <b M -^A

B ® M -*B

M + 1-*M

A +1-^A

B +1-*B

M ^A
M-^B

A+M -^A

B+M-»B

A-Msp. SP-1 ->SP

B -*Msp, SP-1 -*SP

SP+ 1 -^SP, Msp-^A

SP+1 -^'SP, Msp^B

M ,
—

mniTj
‘^7

M
I

A L*o.

I i rn m

>37

A-M
B-^M

A - M ^A
B-M-^B

A-8->A

A - M - C -*-A

B - M - C->B

A-*B

B-^A

M -00

A -00

8-00

INDEX REGISTER AND STACK

POINTER OPERATIONS MNEMONIC

IMMED DIRECT INDEX EXTND INKER

BOOLEAN/ARITHMETIC OPERATION

5 4 2 1 0

OP OP ~ # OP # OP # OP # H N Z V c

Compare Index Reg CPX 8C 3 3 9C 4 2 AC 6 2 BC S 3 (Xh/Xl) - (M/M + 1) • • © t ® •

Decrement Index Reg DEX OS 4 1 X - wx • • • • •

Decrement Stack Pntr DES 34 4 1 SP- 1 -SP

Increment Index Reg INX 08 4 1 X + 1 -^x • • • t « •

Increment Stack Pntr INS 31 4 1 SP+ 1 -*SP

Load Index Reg LDX CE 3 3 DE 4 2 EE 6 2 FE 5 3 M->Xh,(M + 1)--Xl • • @ X R •

Load Stack Pntr LDS 8E 3 3 9E 4 2 AE 6 2 BE 5 3 M -^SPh. (M + 1) -SPl • • ® t R •

Store Index Reg STX DF 5 2 EF 7 2 FF 6 3 XH-"M,XL-*-(Mtll • • ® t R •

Store Stack Pntr STS 9F 5 2 AF 7 2 BF 6 3 SPh -»M. SPl -(M + 1) • • © 1 R •

Indx Reg Stack Pntr TXS 35 4 1 X - 1
-*•$?

Stack Pntr -» Indx Reg TSX 30 4 1 SP + 1 - X

JUMP AND BRANCH

OPERATIONS MNEMONIC

RELATIVE INDEX EXTND INNER

BRANCH TEST

S 4 3 2 1 0

OP .a OP OP :r OP ~ # H 1 N Z V c

Branch Always BRA 20 4 2 None

Branch If Carry Clear BCC 24 4 2 C = 0

Branch If Carry Set BCS 25 4 2 C= 1

Branch If = Zero 8EQ 27 4 2 Z = 1

Branch if ^ Zero BGE 2C 4 2 N -B V = 0

Branch If > Zero BGT 2E 4 2 Z + (N-i'V) = 0

Branch If Higher BHI 22 4 2 C + Z = 0

Branch If ^ Zero BLE 2F 4 2 Z +(NBV)= 1

Branch If Lower Or Same BLS 23 4 2 C + Z= 1

Branch If < Zero BLT 2D 4 2 N !’ V = 1

Branch If Minus 8MI 2B 4 2 N = 1

Branch If Not Equal Zero BNE 26 4 2 Z= 0

Branch If Overflow Clear BVC 28 4 2 V = 0

Branch If Overflow Set BVS 29 4 2 V= 1

Branch If Plus BPL 2A 4 2 N = 0

Branch To Subroutine BSR 80 8 2

Jump JMP 6E 7E See Special Operations

Jump To Subroutine JSR AD 8 BD

No Operation NOP 01 2 1 Advances Prog. Cnlr. Only

Return From Interrupt RTI 3B 10 t ©
Return From Subroutine RTS 39 5 1 • • • • • •

See special Operations
Software Interrupt SWI 3F 12 1 • S • • • •

Wail for Interrupt WAI 3E 9 1 • ® • • • •

CONDITIONS CODE REGISTER

OPERATIONS MNEMONIC

INNER
BOOLEAN
OPERATION

5 4 3 2 1 0

OP H 1 N Z V c

Clear Carry CLC OC 2 1 O-C • • • • R

Clear Interrupt Mask CLl OE 2 1 0 -*l • R • • •

Clear Overflow CLV OA 2 1 O-fV • • • R •

Set Carry SEC 90 1 1 • • • • s

Set Interrupt Mask SEI OF 1 1
-"1 • S • • •

Set Overflow SEV OB 1 1 ^v • • • S •

Acmitr A -* CCR TAP 06 1 A-*CCR w -

CCR -* Acmitr A TPA 07 1 CCR ^A ^11. .
•

LEGEND: 00 Byte = Zero;

OP Operation Code (Hexadecimal); H Half-carry from bit 3;

Number of MPU Cycles; 1 Interrupt mask

r- Number of Program Bytes; N Negative (sign bit)

f Arithmetic Plus; Z Zero (byte)

- Arithmetic Minus; V Overflow. 2's complement

. Boolean AND; C Carry from bit 7

Mgp Contents of memory location R Reset Always

pointed to be Stack Pointer;
S Set Always

+ Boolean Inclusive OR; X Test and set if true, cleared otherwise

ffi Boolean Exclusive OR; • Not Affected

M Complement of M; CCR Condition Code Register

- Transfer Into; LS Least Significant

0 Bit = Zero; MS Most Significant

CONDITION CODE REGISTER NOTES;

(Bil set it tesi is true and cleared otherwise)

O IBit VI Test: Result = lOaOOOOO?

® IBl! Cl Test: Result = 00000000’

@ (Bit Cl Test' Decinial value o(most significant BCD Charactef greater than nine?

(Not cleared if previously set.)

0 (BitV) Test; Operand = 10000000 prior to execution?

0 (BitV) Test; Operand = 01 1 11 1 1 1 prior to execution?

© (BitV) Test: Set equal to result of N C after shift has occurred.

© (Bit N) Test: Sign bit of most significant (MS) byte of result = 1?

® (Bit V) Test; 2's complement overflow from subtraction of LS bytes?

© (Bit N) Test; Result less than zero? (Bit 15=1)

(0 (All) Load Condition Code Register from Stack. (See Special Operations)

(0 (Bit I) Set when interrupt occurs. If previously set, a Non-Maskable Interrupt is

required to exit the wail state.

(0 (ALL) Set according to the contents of Accumulator A.

/

Hexadecimal Values of Machine Codes

Notes: 1. Addressing Modes: A " Accumulator A
B Accumulator B
REL = Relative

IND = Indexed
2. Unassigned code indicated by

IMM = Immediate

DIR = Direct

APPENDIX B

MACHINE LANGUAGE REFERENCE

The Imagination Machine contains a machine language reference

mode. You can use this to create, display, change, and execute

machine language programs.

To use this appendix, you must be able to write programs in 6800

machine language. You must also have a working knowledge of

hexadecimal notation.

CALL 28672

This BASIC statement takes you out of BASIC. You are now talking

to the Imagination Machine Monitor. The monitor puts a at

the beginning of each line on the screen. When you see the

you can enter one of the three monitor commands

:

D nnnn whe re nnnn i s a hexadecimal addr e s s

G nnnn where nnnn is a hexadecimal address
M nnnn wh ere nnnn i s a hexade cimal address

D nnnn - DISPLAY MEMORY

This command will display the 16 bytes of memory beginning at

address nnnn. To display the next 16 bytes, press the "/" key.

To end the command, press the RETURN key.

Example: * D 9B3C
* 9B3C 20 EO B6 AO 58 BD 9A B6 CE

AO 9C 7E 9A 28 7C aO/
* 9B4C AA 20 D4 86 04 CE AO AA OC

69 00 09 8C 80 9C 26 (Return)
*

G nnnn - GOTO MEMORY ADDRESS

This command acts much like the BASIC GOTO statement except the

value NNNN is a four digit hexadecimal memory address. The

Appendix B
Page 2

computer immediately begins executing the. machine language

program at that address.

*G 8894

Address 8894 is the start of the Imagination Machine's BASIC.

This is how you reenter BASIC. If you had a BASIC program

in memory when you called the monitor, it should still be there.

M nnnn - MODIFY MEMORY

This command immediately displays the contents at memory address

nnnn. You can do one of four things:

reply with the "/" key and the command proceeds by
displaying the next position in memory.

reply with " " key and the command proceeds to display
the previous memory position.

reply with the RETURN key and the command is ended.

reply with a two-digit hexadecimal number and the RETURN
key and the command stores this new number in the current
memory position. Then you can press Return, /, or with
the results as above.

If the M command cannot change the memory location, it will

respond with a "?."

APPENDIX C

Schematics/Parts Layouts

FIG

D-I

D-2

D- 3

D-4

D-5

D-6

D-7

D-8

D-9

D-IO

D-II

D- 12

MPlOOO Schematic

MPlOOO Parts Layout

MPA-10 Schematic

MPA-10 Parts Layout

J Connector Schematic

J Connector Parts Layout

ROM Cartridge Schematic

ROM Cartridge Parts Layout

Tape-Power Board Schematic

Tape-Power Board Parts Layout

Keyboard Matrix

Keyboard Layout

I

;

Figure

D-2

MP1000

Parts

Layout

Figure D-3
MPA-10 Main Board Schematic

r n

30 PIN ROM

30 PIN TO ^000
L

C52

C47

C50 C51

L20 C26

U1

L

o o o
C25-

3

C24-

C23-

U9 C22"

L18 C21 -

LIT C20-

R4 CIS -

L16 C16-

R1 C48-

R2 cn -

Rj cie-

HHHH
87654321 87654321

.J

Figure D - 4

MPA -10 Main Board Parts Layout

u

(0

E
0)

»o ow
Q

o
w o
3 0)

0)C

O

Figure D-6
J Connector Parts Layout

30 PIN ROM

2

. 4

6

8

10

12

14

16

20

24

28

29

30

26

1

3

5

17

15

13

11

9

19

21

25

7

27

23

18

22

BA0
BA 1 A1

BA2 A2
BA3 A3

BA4 A4

BA 5

BA6
,

A6

BA7 A7
BAS A8
BA9 A9
BAIO AJO

BA11 All

BA12 A12

BDSf 0 1

BDl 02

BD2 03

BD3
,

04

BD4 05
BD5 06

BD6 07

BD7 08

BR/W^ 0
VCC

BVMA

P GND

5v

89

7800>7FFF

6 800 -77FF

XI
50 n

C5

VS5

8

7

6

5

4

3

2

1

23

22

1 9

1 8

21

24

20

IC1

64K ROM
CN22068

A1

A2

A3

A4
AS

A6

A7

AS

A9

A10

0 1

0 2

0 3

04

0 5

06
0 7

0 8

5v o-

vcc

cF^
son

^VSS

CSl

8

7

6

5

4

3

2

1

23

22

1 9

9

10

1 1

1 3

14

1 5

1 6

1 7

24

1 2

20

18

IC2

32 K ROM
CN19266

t5v

TRI
J4 7K

+5v *

CS2 o +5v

NC<

14 1

13 2

12 IC3 3

n 7416 4

10 5

9 6

8 7

>NC

»NC

APF ELECTRONICS INC.

SCHEMATIC- MPA 10 (ROM)

u

n
E
0)

£
u
</)

I

Q ®
D)

3 *-

(0

U. o
2
O
oc

APF ELECTRONICS INC.

PARTS LAYOUT - MPA10 (ROM)

I

Figure

D-

8

RO.M

Cartridge

Layout

LOWER

TRACK

Figure D- 10

Tape-Power Board Parts Layout

(

TO PIA A SIDE INPUTS

PAO PA1 PA2 PA3 PA4 PAS PA6 PA7

FROM 74LS145

0

1

2

3

4

5

6

X Z Q 2 A 1 W S

c V R 3 F 4 E D

N B T 6 G 5 Y H

M 9 I 7 K 8 U J

' / • 0 0 L 9 P
•

9

SPACE :
RE-

TURN
— LINE

FEED

RUB

OUT

SHIR ESC CTRL REPT BREAK
HERE

IS

APF ELECTRONICS INC.

MATRIX ~ MPA10(KEYBOARD)

Figure

D
-

II

Ke-yboard

Matrix

ESC

99

2

Q

#
3

W

$
4

&
6

9

7

U

)

9

©
P

LINE
FEED

HERE
IS

RETURN

CTRL D H
[

K

\
L

+

9

RUB
OUT REPT BRK

SHIFT
Z X C V B

A

N M
<
f

>
•

9

/

SPACE

SHIFT

APF ELECTRONICS INC.

KEYS LAYOUT - MPA1 0 (KEYBOARD)

1

Figure

D-12

Keyboard

Layout

APPENDIX D

ASCII CODES AND IMAGINATION MACHINE INTERNAL STORAGE

Although the Imagination Machine uses an 8-bit word (1 byte)
for all memory storage, different interpretation by the machine
of these codes occurs. This appendix will clarify how and
when a code is interpreted.

1. For all program storage the statement is stored in standard

7-

bit ASCII Code. There are 128 standard ASCII Codes (Codes
0-127) . Since an 8-bit word is used in memory, there are
256 possible codes. The codes between 128 and 255 are used
as "tokens" for the keywords used by Basic. (This means
the words PRINT or NEXT each are represented by a single

8-

bit code called their token.)

2. Since the Imagination Machine uses a color T.V. for its
output and has capability for colored graphics as well as

reverse video, it is the codes stored in the screen maps
that have to be interpreted differently from the standard
ASCII Codes. Screen Codes 0-127 will produce only 64 of
the ASCII characters in 1 of 2 video modes (normal or reverse
Codes 128-255 will produce "semigraphics characters."

3. PRINT Statements

The Print Statement deals only with ASCII Codes. When the
word PRINT is executed, it goes through a special routine.
You can't use the word PRINT to get a semigraphics shape on
the screen. Typing PRINT 123 puts the codes for 1, 2, and
3 to the screen. Typing PRINT CHR$(132) causes the print
routines to recognize the code (132) as a token code, and
it expands it to its keyword. (PRINT CHR$(132) will cause
DIM to be put on the screen.)

4.

POKE Statements

Since Poke Statements simply take the value and place it
in memory (regardless of whether it is screen memory, pro-
gram memory, or even a peripheral address) , codes poked to
screen memory are not interpreted as in a Print Statement.
POKE 512, 132 will cause a green square with a shape of 8

to be put in the top of the screen.

Appendix D
Page 2

erved Word

RESERVED

Token Code

WORDS AND

(Decimal

)

THEIR TOKEN CODES

Reserved Word Token Code

ABS 170 MUSIC 164

ASC 175 NEXT 144

CALL 165 ON 136

CHR$ 174 OPEN 162

CLOAD 151 PEEK 173

CLOSE 163 PLOT 153

COLOR 156 POKE 152

CSAVE 150 PRINT 145

DATA 130 READ 143

DIM 132 REM 148

DIR 166 RESTORE 139

EDIT 158 RETURN 134

END 146 RND 176

FOR 133 RUN 161

GOSUB 123 SAVE 159

GOTO 137 SGN 171

HLIN 154 SHAPE 157

IF 140 SPC 168

INIT 160 STEP 141

INPUT 131 STOP 142

INT 169 TAB 167

KEY$ 177 THEN 135

LEN 176 TO 138

LET 129 USING 149

LIST 147 VLIN 155

(Decimal

)

Appendix D

Page 3

ASCII CHARACTER SET (7-BIT CODE)

M.S.

CHAR 0 1 2 3 4 5 6 7

L.S.

CHAR
000 001 010 Oil 100 101 110 111

0

0000
NUL DLE SP 0 @ P »

P

1

0001
SOH DCl 1 1 A Q a g

2

0010
STX DC2 ff

2 B R b r

3

0011
ETX DC3 # 3 C S c s

4

0100
EOT DC4 $ 4 D T d t

5

0101
ENQ NAK % 5 E U e u

6

0110
ACK SYN & 6 F V f V

7

0111
BEL ETB /

7 G w g w

8

1000
BS CAN (8 H X h X

9

1001
HT EM) 9 1 Y i y

A
1010

LF SUB * J Z
j

z

B
1011

VT ESC + K
[

k I

c
1100

FF FS 9
< L \ 1

D
1101

CR GS - = M
]

m 1

E
1110

SO RS • > N t n ~

F
1111

SI VS '

/ ? O i 0 DEL

ASCII CODE

NOTES

NOTES

* 7-5
" '

*• i '

}.

>•

i

1.

NOTES

*.

:>

*1

NOTES

NOTES
I

t

r

\

4

NOTES

.''S .V .

'.• A

.
'4 *

t.
-j^

nr ^ ‘<1^

f

r
1

i

5 t

i

1

u
'll

I

M

1

i
<

1

f

1

iAoaaiiij

*' f

1

(

w

*

I

i

u >

L

t

I

f

[

I

' -^L

1

i
'

1

